

LIFE SCIENCES SAMPLE--Original Abstract

Bacillus anthracis (*B. anthracis*) is a gram-positive bacteria that induces anthrax; and it has two pathogenic mega-plasmids that are pX01 and pX02. Between these two, although its size is about 1 98Kb, genetic function of X01 has not been known except for a part called pathogenic island, which includes three toxin component genes that are *pag*, *lef* and *cya*. Proteomic system was used to verify if there was a protein that was controlled by pX01 plasmid. By using thermo-sensitive character of pX01 plasmid, strain that pX01 was artificially removed from *B. anthracis* H9401 (pX01+/pX02+) 1 was obtained. Protein regulation data was obtained by using 2D-DIGE system and Decyder software. The 1,728 of proteins had appeared in wild type strain and 1,684 appeared in strain that pX01 plasmid was cured. Among these, 27 proteins had disappeared and 8 proteins appeared by removing pX01 plasmid. In addition, 52 proteins were down-regulated and 15 proteins were up-regulated by removing pX01 plasmid. Total 102 proteins had been identified by MALDI-TOF/TOF, and among them were 49 proteins with unknown functions. There were 31 proteins identified as they participated in metabolism, 2 in cellular process, 18 in genetic information processing, and 5 in environmental information processing. Among these, 7 proteins were identified as they were anticipated to participate in virulence and pathogenesis. Functions of those in other bacteria based on documents about identified proteins was investigate, and characteristic changes in *B. anthracis* H9041 derivative as pX01 plasmid curing was made researches. Germination rate of pX01+/pX02+ *B. anthracis* and pX01-/pX02+ *B. anthracis* derivative were different and was cytotoxic percentage for macrophage. Also, revelation of S100B protein in host was increased when the host was infected with pX01+/pX02+ *B. anthracis* and pX01-/pX02+ *B. anthracis* derivative."

LIFE SCIENCES SAMPLE--Edited Version

Bacillus anthracis is a gram-positive bacterial organism that is responsible for anthrax. This organism has two pathogenic plasmids: pX01 and pX02. The genetic function of pX01, which consists of approximately 198 kb, is not known, except for a region called the "pathogenic island," which includes three genes—*pag*, *lef*, and *cya*—that code for three toxic proteins. A proteomic system of analysis was used to verify the existence of proteins that are controlled by this plasmid. Taking advantage of the thermosensitive character of the pX01 plasmid, researchers have been able to remove it from *B. anthracis* H9401 (pX01+/pX02+). Protein regulation data were obtained using two-dimensional difference gel electrophoresis and Decyder software. A total of 1728 proteins were identified in the wild type strain of this organism and 1684 in the pX01 plasmid. Of these, 27 disappeared and eight appeared when the pX01 plasmid was removed. An additional 52 proteins were down-regulated and 15 were up-regulated when this plasmid was removed. A total of 102 proteins have been identified using the matrix-assisted laser desorption ionization/time of flight method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 18 in the processing of genetic information, and five in the processing of extracellular information. Another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly in the *B. anthracis* derivative H9041. Germination rates for pX01+/pX02+ *B. anthracis* and its pX01-/pX02+ derivative were different, but both organisms were cytotoxic in macrophages. It was also revealed that S100B protein levels increased in the host that was infected with pX01+/pX02+ *B. anthracis* or its pX01-/pX02+ derivative. (AU: Please add a sentence summarizing your conclusions about these findings.)

LIFE SCIENCES SAMPLE--Published Version

Bacillus anthracis is a gram-positive bacterial organism responsible for anthrax. This organism has two pathogenic plasmids: pX01 and pX02. The genetic function of pX01, which comprises about 198 kb, is not known, except for a region called the pathogenic island, which contains three genes—*pag*, *lef*, and *cya*—that code for three toxic proteins. A 2-D difference gel electrophoresis (2-D DIGE) system was used to verify the existence of proteins controlled by the pX01 plasmid, and protein regulation data were obtained using DeCyder software. A total of 1728 proteins were identified in the wild-type strain of this organism and 1684 in the pX01 plasmid. Twenty-seven of these proteins disappeared and eight appeared when the pX01 plasmid was removed. An additional 52 proteins were downregulated and 15 were upregulated when this plasmid was removed. A total of 102 proteins have been identified using the MALDI-TOF method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 15 in the processing of genetic information, and five in the processing of extracellular information. Another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly the *B. anthracis* derivative H9041. Bacterial growth differed between pX01+/pX02+ *B. anthracis* and its pX01-/pX02+ derivative as did the cytotoxicity of macrophages infected by pX01+/pX02+ *B. anthracis* and the pX01-/pX02+ derivative. We also found that S100B protein levels increased in the host infected with pX01+/pX02+ *B. anthracis* or its pX01-/pX02+ derivative. These data suggest that the pX01 plasmid plays a key role in the regulation of protein functions in *B. anthracis*.